ÉCOLE POLYTECHNIQUE
FILIERE MP

CONCOURS D’ADMISSION 2009

PREMIÈRE COMPOSITION DE MATHEMATIQUES

(Durée : 4 heures)

L’utilisation des calculatrices n’est pas autorisée pour cette épreuve.

Exponentielles d’endomorphisme, intégrales et séries

Première partie

On désigne par $C^\infty(\mathbb{R})$ l’espace vectoriel des fonctions réelles, de classe C^∞, d’une variable réelle. On définit comme suit des endomorphismes de cet espace :

- pour toute $f \in C^\infty(\mathbb{R})$, $(Xf)(x) = xf(x)$, $(Df)(x) = f'(x)$, $(Af)(x) = xf''(x)$,
- pour tout nombre réel t et pour toute $f \in C^\infty(\mathbb{R})$, $(\Phi_t f)(x) = f(\rho^t x)$.

1. Vérifier que la valeur en $t = 0$ de la dérivée de la fonction $t \mapsto (\Phi_t f)(x)$ est égale à $(Af)(x)$.

On va maintenant étudier les puissances de A et chercher le sens à donner à la formule $\exp(tA) = \Phi_t$.

2. Vérifier que, si f est un polynôme, la série $\sum_{n \geq 0} \frac{t^n}{n!}(A^n f)(x)$ est convergente et de somme $(\Phi_t f)(x)$.

3. Montrer que, pour tout entier $n > 0$, on a $D^n X = X D^n + n D^{n-1}$.

4. Montrer que, pour tout entier $n > 0$, il existe des nombres réels positifs $\mu_{n,k}$, $k = 1, \ldots, n$, tels que $A^n = \sum_{k=1}^n \mu_{n,k} X^k D^k$, et exprimer $\mu_{n,k}$ en fonction des $\mu_{n-1,p}$, $p = 1, \ldots, n-1$.

Préciser les valeurs de $\mu_{n,1}$ et $\mu_{n,n}$.
5. On désigne par \(f \) un polynôme d'une variable réelle. Démontrer la relation
\[
\forall t, x \in \mathbb{R} \quad f(e^t x) = f(x) + \sum_{k \geq 1} \left(\sum_{n \geq k} \frac{t^n}{n!} \mu_{n,k} \right) x^k f^{(k)}(x).
\]

6. Étant donné une suite de nombres réels \(a_k, k \in \mathbb{N} \), comparer les rayons de convergence des séries entières \(\sum k a_k x^k \) et \(\sum k a_k x^k \).

7. On se donne maintenant une fonction développable en série entière \(f(x) = \sum_{k \geq 0} a_k x^k \) de rayon de convergence \(R > 0 \). On admettra la propriété suivante :

(P) si \(|x| < R \), la série entière en \(h : \sum_{k \geq 0} \frac{h^k}{k!} f^{(k)}(x) \) a un rayon de convergence au moins égal à \(R - |x| \), et, si \(|h| < R - |x| \), on a \(\sum_{k \geq 0} \frac{h^k}{k!} f^{(k)}(x) = f(x + h) \).

7.a) Vérifier que, si \(|x| < R \), il existe un réel \(\gamma_x > 0 \) tel que
\[
|t| < \gamma_x \implies |(e^t - 1)x| < R - |x|.
\]

7.b) Démontrer l'existence de nombres réels \(\lambda_{n,k}, n, k \in \mathbb{N}^* \), indépendants de \(f \) et tels que l'on ait
\[
\forall x \in]-R, R[, \forall t \in]-\gamma_x, \gamma_x[, \quad f(e^t x) = f(x) + \sum_{k \geq 1} \left(\sum_{n \geq 1} \frac{t^n}{n!} \lambda_{n,k} \right) x^k f^{(k)}(x).
\]

7.c) Vérifier que
\[
\lambda_{n,k} = \begin{cases}
\mu_{n,k} & \text{si } k \leq n, \\
0 & \text{si } k > n.
\end{cases}
\]

[On pourra utiliser le résultat de la question 5.]

7.d) Montrer que, pour \(1 \leq k \leq n \), on a \(\lambda_{n,k} \leq \frac{n!}{(k-1)!} \).

7.e) On pose \(Z_{n,k} = \frac{t^n}{n!} \lambda_{n,k} x^k f^{(k)}(x) \). Indiquer deux réels \(\alpha > 0 \) et \(\eta > 0 \) tels que
\[
|x| < \alpha, |t| < \eta \implies \sum_{k \geq 1} \left(\sum_{n \geq 1} |Z_{n,k}| \right) < +\infty.
\]

7.f) Montrer que, si \(|x| < \alpha \) et \(|t| < \eta \), la série \(\sum_{n \geq 0} \frac{t^n}{n!} (A^n f)(x) \) est convergente et de somme \((\Phi_t f)(x)\).
Deuxième partie

Dans cette partie, on désigne par \mathcal{F} l’espace vectoriel des fonctions f réelles, d’une variable réelle, continues et telles que, pour tout entier $k \geq 0$, la fonction $x \mapsto x^k f(x)$ soit bornée.

8. Soit f une fonction de \mathcal{F}. Montrer que, pour tout entier $k \geq 0$, la fonction $x \mapsto x^k f(x)$ est intégrable sur \mathbb{R}.

On posera $m_k(f) = \int_{\mathbb{R}} x^k f(x) dx$.

9. Soient f et g deux fonctions de \mathcal{F}.

9.a) Montrer que, pour tout réel x, la fonction $y \mapsto f(x-y)g(y)$ est intégrable sur \mathbb{R}.

On notera $f * g$ la fonction $x \mapsto \int_{\mathbb{R}} f(x-y)g(y) dy$.

9.b) Montrer que $f * g$ appartient à \mathcal{F} et écrire une formule de la forme

$$m_k(f * g) = \sum_{p=0}^{k} \gamma_{k,p} m_p(f)m_{k-p}(g),$$

où les $\gamma_{k,p}$ sont des coefficients à déterminer.

On admettra la commutativité et l’associativité de l’opération $(f,g) \mapsto f * g$.

10. Étant donné des fonctions f_1, \ldots, f_n de \mathcal{F}_0, calculer $m_0(f_1 \cdots * f_n)$ et $m_1(f_1 \cdots * f_n)$ puis exprimer $m_2(f_1 \cdots * f_n)$ en fonction des $m_2(f_i), i = 1, \ldots, n$.

Pour tout réel $a > 0$, on désigne par T_a l’endomorphisme de \mathcal{F} défini par $(T_af)(x) = af(ax)$.

11. Calculer $m_k(T_af)$.

Dans la suite du problème on désigne par $f_i, i = 1,2,\ldots$, des fonctions de \mathcal{F}_0, et, pour tout n, on pose $F_n = f_1 \cdots * f_n$. On suppose que tous les $m_2(f_i)$ sont majorés par une même constante C.

12.a) Montrer que, pour tout réel $\alpha > 0$, les deux intégrales $\int_{0}^{+\infty} (T_nF_n)(x) dx$ et $\int_{-\infty}^{0} (T_nF_n)(x) dx$ tendent vers 0 lorsque $n \to +\infty$.

3
12.b) Étant donné une fonction h continue bornée sur \mathbb{R}, étudier le comportement de

$$\int_{\mathbb{R}} h(x)(T_n F_n)(x)dx$$

lorsque $n \to +\infty$.

[On pourra considérer d'abord le cas où $h(0) = 0$.]

13.a) Établir une inégalité entre $m_4(f)$ et $m_2(f)^2$ lorsque $f \in F_0$.

13.b) Démontrer la formule, pour $n \geq 2$,

$$m_4(F_n) = \sum_{1 \leq i \leq n} m_4(f_i) + 6 \sum_{1 \leq i < j \leq n} m_2(f_i)m_2(f_j).$$

13.c) Trouver une condition portant sur les $m_4(f_i)$ sous laquelle on ait, pour tout $\alpha > 0$,

$$\sum_{n \geq 1} \int_{-\infty}^{+\infty} (T_n F_n)(x)dx < +\infty.$$